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Standard NASA ocean color algorithm OC4 was developed on the basis of ocean optical

data and while appropriate for Case 1 oceanic waters could not be adequately applied

for the Black Sea waters due to its different bio-optical properties. OC4 algorithm is

shown to overestimate chlorophyll concentration (Chl-a) in summer and underestimate

Chl-a during early spring phytoplankton blooms in the Black Sea. For correct conversion

of satellite data to Chl-a, primary production and other indicators regional algorithms

should be developed taking into account bio-optical properties of the Black Sea waters.

Light absorption by phytoplankton pigments– aph(λ) have been measured in open sea

and shelf Black Sea waters in different seasons since 1998. It was shown that the first

optical depth was located within the upper mixed layer (UML) for most of the year with

the exception of the spring when seasonal stratification was developing. As a result

spectral features of water leaving radiance were determined by optical properties of

the UML. Significant seasonal differences in Chl-a specific light absorption coefficients

of phytoplankton within UML have been revealed. These differences were caused by

adaptive changes of composition and intracellular pigment concentration due to variable

environment conditions–mainly light intensity. Empirical relationships between aph(λ) and

Chl-a were derived by least squares fitting to power functions for different seasons.

Incorporation of these results will refine the regional ocean color models and provide

improved and seasonally adjusted estimates of chlorophyll a concentration, downwelling

radiance and primary production in the Black Sea based on satellite data.

Keywords: phytoplankton, light absorption, parameterization, chlorophyll a concentration, upper mixed layer, the

Black Sea

INTRODUCTION

Visible spectral radiometric data are used widely to assess water productivity (Saba et al., 2011) and
to study effect of climate change on ocean productivity (Behrenfeld et al., 2006). Optical scanners
of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MEdium Resolution Imaging Spectrometer
(MERIS), Moderate Resolution Imaging Spectroradiometer aboard the Terra and Aqua satellites
(MODIS-Aqua/Terra) measure water leaving radiance at several spectral bands (RRS) (Feldman
and McClain, 2013). The spectral distribution of RRS is influenced by particulate scattering
and absorbance of solar radiance by all in-water optically active components: phytoplankton,
non-algal particles (NAP), colored dissolved organic matter (CDOM) and pure water
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(Kirk, 1994). Light absorption by particles (ap (λ)),
phytoplankton (aph(λ)), NAP (aNAP (λ)) and CDOM (aCDOM(λ))
have been studied in different regions of the global ocean since
the 80-s (Hoepffner and Sathyendranath, 1992; Bricaud et al.,
1995, 1998; Cleveland, 1995; Babin et al., 2003) to develop
algorithms for assessment of water productivity based on remote
sensing. Inherent optical properties (IOPs) vary throughout
the world ocean. Due to high variability in light absorption
and scattering by optically active components, the world
ocean needs to be subdivided into various provinces based on
regional IOPs, and their features could be used to improve
remote-sensing algorithms for each province (Hoepffner and
Sathyendranath, 1992; Lutz et al., 1996; Suzuki et al., 1998).
Originally the standard NASA algorithm could be applied if
there was a high correlation between aph(λ) and absorption
by colored dissolved and suspended organic matter (aCDM(λ))
(Morel and Prieur, 1977). Although NASA standard algorithms
are continually being updated (O’Reilly et al., 2000), the latest
versions (OC4 for SeaWiFS, and OC3M for MODIS-Aqua
/Terra) do not provide an adequate assessment of chlorophyll a
concentration (Chl-a) in the Black Sea waters (Suslin and
Churilova, 2016) which belong to the Case 2 (Suslin et al., 2007).
Berthon et al. (2008) underlined that important uncertainties
for the retrieval of marine products like Chl-a still persisted
in areas (including the Black Sea) where relatively high
CDOM absorption and optically active water constituents
CDOM and NAP do not co-vary in a predictable manner with
Chl-a.

For correct conversion of optical scanner signals into water
productivity indices regional algorithms need to be developed
taking into account bio-optical properties of the Black Sea.
The assessment of the Chl-a needs to derive aph(λ) from total
light absorption by all optically active components and then
estimate Chl-a based on relationship between aph(λ) and Chl-a.
This relationship is also required for development of regional
algorithms of downwelling radiance and primary production
by spectral approach. Early versions of the regional bio-optical
algorithms (Suslin et al., 2008; Churilova et al., 2009; Churilova
and Suslin, 2010) were based on limited amount of bio-optical
data available. The bio-optical properties of the Black Sea (namely
aph(λ), aNAP(λ) and aCDOM(λ)) have been studied since 1995
in open and coastal waters of the Black Sea (Churilova, 2001;
Churilova and Berseneva, 2004; Churilova et al., 2004; Chami
et al., 2005; Berthon et al., 2008; Dmitriev et al., 2009). Variability
in aph(λ) spectral distributions and coefficient values in coastal
(Churilova and Berseneva, 2004; Chami et al., 2005; Dmitriev
et al., 2009) and openwaters (Churilova et al., 2004; Berthon et al.,
2008) have been demonstrated but seasonal variability in Chl-a
specific phytoplankton light absorption coefficients remains not
known in details. The bio-optical data measured in the deep
waters of the Black Sea from 2011 to 2015 will be examined in
this study.

The aim of the current research is to analyze seasonal
variability of relationship between phytoplankton light
absorption coefficients and chlorophyll a concentrations
in upper mixed layer (UML) of the Black Sea and derive
season-specific modeling parameters.

MATERIALS AND METHODS

Sampling
Bio-optical measurements were carried out during 7 cruises of
RV “Professor Vodyanitsky” in different seasons during 2011–
2015 in the deep-water areas (deeper 100m isobath) of Black Sea
(Table 1, Figure 1). Water samples were collected at 5–7 depths
within euphotic zone with 10 liter Niskin bottles of CTD/rosette
system MARK-III (Neil Brown Ocean Sensors, Inc) or SBE-
911plus (Sea Bird Electronics). Sampling depths were chosen
based on water transparency by Secchi disc depth (Zs), as well as
temperature and salinity profiles measured by CTD system. The
euphotic zone (Zeu), determined as penetration depth for 1% of
photosynthetically available radiance (PAR), was calculated based
on the light (I) attenuation with depth (z) (Kirk, 1994):

I(z) = I(0) × e(−Kd×z), (1)

where Kd–light attenuation coefficient on average for both
euphotic layer and for visible light waves (400–700 nm). Zeu was
calculated based on the Equation (1):

Zeu =
4.6

Kd
(2)

Values of Kd were estimated based on the relationship between
Kd and Zs obtained for the Black Sea (Vedernikov, 1989).
Average light intensity in the UML (PARUML) was estimated in
accordance with (Babin et al., 1996):

PARUML = PAR (0) ×

(

1− e

(

−4.6×
Zuml
Zeu

))

(

4.6×
Zuml
Zeu

) , (3)

where PAR(0)–PAR at the sea surface, data from Suslin et al.
(2015), Zuml–UML depth was determined using temperature
difference criterion (0.5◦C) and mean water temperature at 0–
3m as reference level. Optical depth (ζ ) of Zuml was assessed
using Kd calculated based on Zs (Vedernikov, 1989).

Pigment Analysis
For chlorophyll and phaeopigment concentration analysis 1–
2 L water samples were gently vacuum filtered (<25 kPa)

TABLE 1 | Information about scientific cruises of RV Professor

Vodyanitsky (PV) in the Black Sea.

Cruise Year Date Investigation area of

the Black Sea

PV 69 2011 2–11 August Deep western

PV 70 2011 19–27 August Deep western

PV 77 2014 3–7 September Deep eastern

PV 78 2014 28 November–9 December Deep eastern

PV 79 2015 25–30 September Deep eastern

PV 81 2015 3–10 November Deep western

PV 82 2015 5–9 December Deep eastern
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FIGURE 1 | Map of bio-optical stations in the scientific cruises on RV Professor Vodyanitskiy (PV) in the Black Sea: No 69 (crosses), 70 (circles), 77

(square), 78 (square, triangles), 79 (triangles), 81 (rhombs), 82 (triangles). The dotted line defines the 100m isobath.

onto 25 mm diameter Whatman GF/F glass fiber filters. Filters
were wrapped in an aluminum foil and stored in a liquid
nitrogen until analysis on a laboratory. Filters were placed in
5 ml of 90% acetone in a 10 ml glass centrifuge tube, then
were treated with vibration for 20 s using a vibration mixer
(FALK Falc instruments, Italy), extracted at 5◦C or below,
for at least 10 h and then centrifuged. The above procedure
was repeated using an additional 5 ml of 90% acetone for
a more complete extraction of phytoplankton pigments. The
second extraction of the pigments contributed 15% on average
to total concentration values. The extracts were then analyzed
for pigment content by spectrophotometric method (Lorenzen,
1967; Jeffrey and Humphrey, 1975) using spectrophotometer
Lambda 35 (Perkin Elmer). Proportion of non-photosynthetic
pigments in the total phytoplankton pigment content (NPP)
was determined in accordance with relationship between
environmental light condition (PAR) and NPP proposed by
Babin et al. (1996).

Phytoplankton Light Absorption
Optical densities of particulate matter were determined by the
filter pad technique (“wet filter technique”) (Yentsch, 1962;
Mitchell and Kiefer, 1988). aph(λ) was determined by the
difference between ap(λ) and aNAP(λ):

aph(λ) = ap(λ)− aNAP(λ) (4)

Values of aph(λ) were obtained from optical densities after
correction for differential scattering (setting the mean
absorption between 740 and 750 nm to zero) and for the
path length amplification factor, converting decimal to natural
logarithms, taking into account the volume filtered and the
filter area of filtration, and subtracting aNAP(λ) (Churilova,
2001). The sample optical densities were measured from 350
to 750 nm on Perkin Elmer Lambda 35 spectrophotometer
equipped with an integrating sphere. aNAP(λ) values were
experimentally determined using the chemical (bleaching
by NaClO solution) method (Tassan and Ferrari, 1995).

The path length amplification factor (beta-correction) was
estimated applying the quadratic equation described by Mitchell
(1990). To get Chl-a specific light absorption coefficients
of phytoplankton (a∗

ph
(λ)) the values of aph(λ) (m−1) were

divided by the sum of chlorophyll a and phaeopigments
concentrations (Chl-a) (mg m−3). Relationships between
aph(λ) and Chl-a were derived by least squares fitting to power
functions for visible spectral domain 400–700 nm with 1 nm
resolution.

Phytoplankton
Identification of phytoplankton species (micro- and nano-
size fractions), counting of cells and cell size measurements
were performed with transmission microscope Ergaval (Carl
Zeiss Jena) using Naumann chamber. Water samples (2–5 L)
were concentrated by inverse filtration method using nuclepore
filters with 1 µm pore diameter. The concentrated samples
were fixed with a solution (4% final concentration) of 25 g
paraformaldehyde dissolved in 100 ml of hot (80◦C) 25%
glutaraldehyde, clarified with few drops of 1 N NaOH solution.
Cells were sized and its volumes were assessed using geometrical
figures (sphere, ellipsoid or cylinder) corresponding to the cell
shapes. Phytoplankton analysis was conducted only at selected
stations in August 2011, September 2014 and December 2014,
2015.

In August 2011, September 2014 and December 2014, 2015
flow cytometric analysis was performed by flow cytometer
Cytomics FC 500 (Beckman Coulter, USA) equipped with a
single-phase argon laser (488 nm) (Marie et al., 1999; Schapira
et al., 2010). For all detected particles phycoerythrin fluorescence
emission (575 nm), and chlorophyll fluorescence emission (675
nm) were measured. The samples were fixed with formaldehyde
(final concentration 2%) immediately after the sampling, then
the samples were frozen in liquid nitrogen (−80◦C) and stored
at −20◦C until analysis in the laboratory. The cytometer
measurements were calibrated by the addition of a known
concentration of the Fluorospheres Flow-CheckTM (Beckman
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Coulter). Cytometric data were analyzed using CXP software
(Beckman Coulter).

RESULTS

Chlorophyll a Concentration
Chl-a in surface layer of the deep water regions of the Black
Sea were low in a summer. In the deep western part of the
sea in August 2011 (Figure 1) Chl-a in the UML were in a
range 0.15–0.30 mg·m−3. At this time, seasonal thermocline was
well developed with maximum of temperature gradient 3.3 ±

1.1◦C m−1 at the 12 ± 2.3m depth, where optical depth (ζ )
was 1.5 ± 0.42 (Table 2). In August water transparency was
high. Values of Zs and Kd were 16 ± 2.1m and 0.12 ± 0.013
m−1, correspondingly. Zeu values were 37 ± 4.0 m. Vertical
Chl-a profiles were characterized by rather homogeneous Chl-a
distribution within UML and deep Chl-a maximum (DCM)
located near the bottom of the euphotic zone with Chl-a values
5–10 times higher than in the UML (Figure 2). In the surface
layer of the deep eastern part of the Black Sea in September 2014
and 2015 (Figure 1) Chl-a values (0.21–0.35 mg·m−3) were very
similar to these measured in summer. In September maximum
temperature gradient (4.3 ± 1.2◦C m−1) and its location (9.5 ±

2.7m with ζ = 1.1 ± 0.40) were similar to those observed in the
summer. Vertical Chl-a distribution was similar to that observed
in August (Figure 2), but with less variability in Chl-a: Chl-a
concentration in the DCM was 3 times higher than in the UML
in comparison with 5–10 times differences in August. Water
transparency in the August and September was comparable (Zs

= 16± 1.4 m; Kd = 0.12± 0.0073 m−1; Zeu = 38± 2.6 m).
In the western deep part of the Black Sea in the late autumn

(November 2015) the seasonal thermocline was substantially
destructed. It resulted in an enlargement of the UML (28 ±

3.4 m), which become ∼3 times deeper than in the summer
(Figure 2). Chl-a in the surface layer in November 2015 varied
from 0.54 to 1.4mg m−3 with less transparency (Zs = 13 ± 1.0
m; Kd = 0.15 ± 0.009 m−1) (Table 2). Maximum temperature
gradient (1.5 ± 0.38◦C m−1) was located at the optical depth
of 4.2 ± 0.72. Consequently, Zeu (31 ± 2.0 m) was close
to UML depth. Chl-a was distributed homogeneously within
UML and decreased sharply in thermocline (Figure 2). Thus,
vertical pigment distribution in November contrasted with that
in summer, when seasonal thermocline divided euphotic zone
into two quasi isolated layers with different environments. In
fact, in late autumn phytoplankton was present in UML only.
In December 2014 and 2015 in surface layer of eastern deep
water part of the Black Sea (Figure 1) Chl-a varied from 1.0
to 2.0mg m−3 (1.3 ± 0.25mg m−3). UML was 32 ± 7.0 m.
Vertical distribution of Chl-a was homogeneous within UML
similar to Chl-a profiles observed in western waters in November
2015. In December Zs and Kd were equal to November 2015
data (12 ± 2.5m and 0.15 ± 0.023 m−1, correspondingly).
Maximum temperature gradient was 0.93 ± 0.45◦C m−1 and
located at optical depths of 4.9 ± 1.2 (Table 2). Consequently, in
December euphotic zone (30 ± 4.9 m) occurred within UML as
it was observed in November. In both December and November
phytoplankton was present within UML only.

Phytoplankton
In August 2011 in UML of western deep waters of the
Black Sea phytoplankton was dominated by dinoflagellates.
Wet biomass of phytoplankton was 540 ± 310 mg·m−3 on
average. Assuming intracellular organic carbon (C) content at
10% of wet biomass, C to Chl-a ratio (C/Chl-a) was 145 ±

76mg mg−1. Biomass of photosynthetic picoplankton was 2.7
± 0.46 mg·m−3 on average. The contribution of picoplankton
to total phytoplankton biomass was <1%. In September 2014
phytoplankton biomass in UML was assessed at selected stations.
Wet biomass was ∼450mg m−3. The phytoplankton was
dominated mainly (50–70%) by dinoflagellates Gymnodinium
spp (Gymnodinium fungiforme and Gymnodinium paululum).
C/Chl-a ratio was ∼110mg mg−1. Photosynthetic picoplankton
biomass was equal 1.7 ± 1.0 mg·m−3 on average and its
contribution to total phytoplankton biomass was < 1%. In
December 2014 and 2015 wet phytoplankton biomass in UML
varied from 190 to 430mg m−3. In 2014 Proboscia alata
dominated (by biomass) in phytoplankton community. In
2015 phytoplankton was represented mainly by large diatoms
Pseudosolenia calcar-avis with cell volume 19000–83000 µ m3.
C/Chl-a ratio was∼25–40mgmg−1. In December 2014 and 2015
biomass of photosynthetic picoplankton was 11.0 ± 4.9 and 13.0
± 4.4 mg·m−3 on average correspondingly, and picoplankton
contribution to total phytoplankton biomass was∼5%.

Phytoplankton Light Absorption
Phytoplankton light absorption spectra measured in UML are
presented on Figure 3. To examine the relationship between
aph(λ) and Chl-a in the UML results were grouped into 2
datasets: (1) summer dataset that included results from August
2011, September 2014, 2015; (2) winter dataset with results
from November 2014, December 2014 and 2015 (Table 1).
September 2014, 2015 was considered part to the summer season,
due to persistence of strong seasonal stratification with typical
“summer” type of vertical distribution of pigments. November
2015 was considered part of winter, because of water column
structure similarity to that in December 2014 and 2015. In
November depths of UML and euphotic zone were close and all
phytoplankton was present within UML as it was in December.

In the aph(λ) spectra two main peaks were observed: in
blue (near 440 nm) and red (near 678 nm) spectrum domains
(Figure 3). The seasonal differences in the phytoplankton light
absorption were manifested in both spectral shapes and values
of chlorophyll a specific coefficients. In the summer a∗

ph
(λ) were

relatively high in the blue spectrum domain. Ratio between blue
and red peaks (R) was 3.4 (± 0.61) on average in summer, which
was significantly higher than in winter (2.2± 0.45) (Figure 3). In
both winter and summer R values decreased if Chl-a increased.
The variations of aph(λ) as a function of Chl-a are shown in
Figure 4 at two wavelengths (∼440 and 678 nm) corresponding
to the blue and red peaks of the spectra. To describe the
relationship between aph(λ) and Chl-a a power function was used
(Figure 4):

aph(λ) = A(λ)× (Chl-a)B(λ), (5)
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TABLE 2 | Hydrophysical characteristics: maximum temperature gradient (1T) and depth (Ztc)/optical depth (ζ ) of its location; Secchi disc depth visibility

(Zs); euphotic zone (Zeu); diffuse attenuation coefficient for downwelling irradiance over the Zeu (Kd ); photosynthetically availably radiance incident on

the Black Sea surface [PAR(0)]and averaged over upper mixed layer [PAR(UML)].

Ztc, m ζ 1T, ◦C m−1 PAR (UML), E m−2 d−1 Zs, m Kd , m
−1 Zeu, m PAR(0), E m−2 d−1

AUGUST (2011)

mean 12 1.5 3.3 27 16 0.12 37 52

SD 2.3 0.42 1.1 8.1 2.1 0.013 4.0 1.2

min 8.0 0.84 2.2 31 12 0.10 30 46

max 13 2.0 5.7 24 20 0.15 46 56

SEPTEMBER (2014, 2015)

mean 9.5 1.1 4.3 22.5 16 0.12 38 38

SD 2.7 0.40 1.2 2.9 1.4 0.0073 2.6 4.1

min 5 0.55 2.9 21 12 0.11 30 28

max 14 2.1 7.8 31 17 0.15 45 46

NOVEMBER (2015)

mean 28 4.2 1.5 3.9 13 0.15 31 17

SD 3.4 0.72 0.38 1.2 1.0 0.0090 2.0 2.5

min 24 3.12 1.0 2.0 11 0.13 28 9

max 35 5.6 2.1 8.6 14 0.16 34 22

DECEMBER (2014, 2015)

mean 32 4.9 0.93 2.4 12 0.15 30 12

SD 7.0 1.2 0.45 0.8 2.5 0.023 4.9 1.7

min 27 2.9 0.24 2.5 7 0.11 20 7.8

max 55 12.7 2.0 1.2 19 0.23 43 15

FIGURE 2 | Examples of vertical profiles of temperature (T, line) and the sum of chlorophyll a and phaeopigments concentrations (Chl-a, circles) in the

deep water of the Black Sea in different time.

where A(λ)–spectral coefficient, which is equal to a∗
ph
(λ) in case

when Chl-a equal to 1mg m−3.
For two data sets following fit equations were obtained

(Figure 4):

(1) In summer:

aph(440) = 0.076 × (Chl-a)0.84(r2 = 0.66) (6)

aph(678) = 0.024× (Chl-a)0.95(r2 = 0.63) (7)

(2) In winter:

aph(440) = 0.045× (Chl-a)0.81(r2 = 0.78) (8)

aph(678) = 0.021× (Chl-a)0.95(r2 = 0.88) (9)

To infer aph(λ) spectral distribution from Chl-a relationship
between these parameters needs to be determined for entire
visible spectrum (400–700 nm). Based on two empirical data
sets the aph(λ) vs Chl-a dependencies were parameterized
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FIGURE 3 | Chl-a specific phytoplankton light absorption coefficients a*
ph

(λ) in upper mixed layer of the Black Sea in summer (A) and winter (B).

FIGURE 4 | Dependence of phytoplankton light absorption coefficients at red (aph(678)) (A) and blue (aph(440)) (B) peaks of spectra on the sum of

chlorophyll a and phaeopigments concentrations (Chl-a) in upper mixed layer of the Black Sea in summer (circles, red line of fitting) and winter (squares, blue line of

fitting).

using Equation (5) for summer and winter. The results of the
parameterization performed from 400 to 700 nm with 1 nm
spectral resolution are presented in Figure 5 and in Tables 3, 4. It
is evident that a∗

ph
(λ) values are higher in summer than those in

winter (Figure 3). This seasonal difference is more pronounced
in the blue spectrum domain. For summer phytoplankton the
value of A(λ) coefficient at 440 nm is about twice higher than
that for winter.

Photosynthetically available radiance incident on the Black
Sea surface [PAR(0)] varied seasonally (Suslin et al., 2015). In
August and September PAR(0) was on average 52 ± 1.2 and 38
± 2.6 E m−2 d−1 correspondingly (Table 2). In November and
December PAR(0) was 17 ± 2.5 and 12 ± 1.7 E m−2 d−1, which
were about 3 times lower than those in warm months. PAR in
UML depends not only on PAR(0) but also on water transparency
and ratio between ZUML and Zeu. In winter, waters were less
transparent than in summer. Moreover, UML was comparable
with Zeu in winter while in summer ZUML was located between
first and second optical depths. As results PAR in UML differed

more (∼10 times) between summer and winter in comparison
with seasonal dynamics of PAR(0) (Table 2). PAR in UML was
equal in August and September 27 ± 8.1 and 23 ± 2.9 E m−2

d−1, correspondingly (Table 2). In November and December
PAR in UML was equal 3.9 ± 1.2 and 2.4 ± 0.8 E m−2 d−1,
correspondingly (Table 2).

DISCUSSION

The first optical depth which determines water leaving radiance
spectral patterns (Gordon and McGlunev, 1975) detectable
by remote scanners is located within the UML in the deep
open waters of the Black Sea. It should be noted that Kd

averaged over the euphotic zone was used in our assessment.
However, domination of CDOM in total light absorption in
the Black Sea results in sharply decreasing Kd values with
depth. In the subsurface layer Kd values were estimated
to be ∼1.6 times higher than mean Kd for euphotic zone
(Churilova et al., 2009). Therefore, in our assessment Zuml was
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FIGURE 5 | Spectral values of the constants A(λ) (A) and B(λ) (B) obtained when fitting the variations of phytoplankton light absorption (aph(λ)) vs. the sum of

chlorophyll a and phaeopigments concentration (Chl-a) to power laws of the form aph(λ) = A(λ)(Chl-a)B(λ): for upper mixed layer of the Black Sea in summer (red lines)

and winter (blue lines) with comparison with data (gray lines) follow in Bricaud et al. (1995).

underestimated by using average Kd. In fact, it gives more
reasonable conclusion about location of the first optical depth
within UML. Consequently, bio-optical properties of the UML in
the Black Sea determine remotely sensed optical signals and could
be used for development and refining of the regional models of
productivity indicators.

Analysis of the link between phytoplankton light absorption
coefficients and chlorophyll a concentration revealed seasonal
differences in UML (Figures 3, 4 and Tables 3, 4) which were
related to difference of a∗

ph
(λ) values between summer andwinter.

The difference was more pronounced in the blue spectrum
domain (Figure 3). In summer values of parameterization
coefficient A(λ) relevant to red and blue peaks were on
average 15 and 70% higher than those for winter (Figure 5),
respectively. Seasonal differences in normalized (on Chl-a)
phytoplankton light absorbance capacity were related to strong
changes in environmental conditions in UML, mainly due to
the averaged PAR within UML (Figure 6). Observed seasonal
dynamics of (UML) and euphotic zone in the deep open
waters of the Black Sea are consistent with intraannual
changes of these parameters (Zuml and Zeu) in the Black Sea
outlined earlier (Ivanov and Belokopytov, 2011; Agirbas et al.,
2014).

In winter [PAR(0)] decreased but the ratio between ZUML

and Zeu increased in comparison with summer. As the result in
winter average light field within UML decreased in almost 10-
fold in comparison with PARUML in summer. Seasonal changes of
environmental conditions in UML caused ∼5–7 fold variability
in C/Chl-a ratio between winter and summer. Observed C/Chl-a
variability agrees with a change of intracellular concentration of
chlorophyll a (MacIntyre et al., 2002; Behrenfeld et al., 2005) due
to physiological acclimation of algae cultures and phytoplankton
to light intensity decreased in the same range as PAR varied in
the UML of the Black Sea. Intracellular pigment concentration
defines degree of pigment packaging, which in turn effects on

a∗
ph
(λ) (Morel and Bricaud, 1981; Bidigare et al., 1990; Hoepffner

and Sathyendranath, 1991; Kirk, 1994; Fujiki and Taguchi, 2002).
In the current research it was shown that a∗

ph
(λ) and C/Chl-a

were significantly less in winter than values of those parameters in
summer, which were relevant to “pigment packaging” effected on
a∗
ph
(λ) at red peak (∼678 nm) where light quanta are absorbed

by chlorophyll a and phaeopigments only (Jeffrey et al., 1997).
At shorter wavelengths (in blue spectrum domain) seasonal
variation in a∗

ph
(λ) wasmore pronounced than at red wavelengths

(Figure 3). In the blue part of the spectrum besides chlorophyll
a, other accessory pigments absorb light quanta (Bidigare et al.,
1990; Jeffrey et al., 1997) which lead to “smoothing” of spectra
due to accessory pigment “packaging” if Chl-a specific absorption
coefficients are considered. Ratio of accessory pigment-to-Chl-
a changes due to photoacclimation of algae (MacIntyre et al.,
2002; Grant and Louda, 2010), which is related mainly to
photoprotective (i.e., non-photosynthetic) pigments (NPP). In
review of photoacclimation of different microalgae taxons it was
shown that ∼order increase of light intensity resulted in ∼3–4
times increase of photoprotective xanthophyll to Chl-a ratio on

average (Figure 9 in MacIntyre et al., 2002). Investigations of

phytoplankton accessory pigments variability have demonstrated
that photoprotective pigments tend to be greater in the surface

low Chl-a waters at latitudes where radiance incident on the sea
surface is relatively high (Stuart et al., 1998; Barlow et al., 2004;

Sathyendranath et al., 2005). Variability of R (aph(440) /aph(678))

was shown to be correlated with NPP to Chl-a ratio (Lutz et al.,
2003). Altogether the increase of a∗

ph
(440) is related to low Chl-

a waters with lower intracellular concentrations of pigments,

and a greater proportion of photoprotective pigments occurred
in stratified, high light, nutrient-limited regions (Bricaud et al.,
1995; Cleveland, 1995; Aguirre-Hernandez et al., 2004). In
general these results are in a good agreement with the Black Sea
observations. Although in current research pigment composition
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TABLE 3 | Spectral values of the constant obtained when fitting the variations of aph(λ) vs. the (chlorophyll a + phaeopigment) concentration (Chl-a) to

power laws of the form.

λ A(λ) SD B(λ) λ A SD B(λ)

400 0.050 0.00779 0.82 544 0.013 0.00332 0.88

402 0.051 0.00774 0.83 546 0.013 0.0033 0.88

404 0.052 0.00777 0.83 548 0.012 0.00329 0.91

406 0.054 0.00799 0.83 550 0.012 0.00315 0.92

408 0.056 0.00805 0.83 552 0.011 0.00319 0.94

410 0.058 0.00813 0.84 554 0.010 0.00319 0.95

412 0.060 0.00845 0.84 556 0.010 0.00296 0.97

414 0.061 0.0086 0.85 558 0.009 0.00302 1.00

416 0.063 0.0087 0.86 560 0.009 0.00323 0.98

418 0.064 0.00896 0.86 562 0.008 0.00363 0.99

420 0.065 0.00901 0.86 564 0.008 0.00323 1.03

422 0.066 0.00911 0.86 566 0.008 0.00311 1.04

424 0.067 0.00949 0.86 568 0.007 0.00358 1.03

426 0.069 0.00966 0.86 570 0.007 0.00343 1.04

428 0.070 0.00974 0.86 572 0.007 0.00334 1.07

430 0.071 0.00989 0.85 574 0.007 0.00319 1.06

432 0.073 0.00991 0.85 576 0.007 0.00331 1.03

434 0.075 0.00983 0.84 578 0.006 0.00354 1.03

436 0.076 0.00977 0.84 580 0.006 0.00316 1.03

438 0.076 0.0097 0.85 582 0.006 0.00333 1.05

440 0.076 0.00946 0.84 584 0.006 0.00325 1.06

442 0.076 0.00941 0.85 586 0.006 0.00375 1.03

444 0.074 0.00934 0.84 588 0.006 0.00319 1.01

446 0.072 0.00914 0.85 590 0.006 0.00308 1.04

448 0.071 0.00898 0.85 592 0.006 0.00335 1.05

450 0.069 0.00876 0.84 594 0.006 0.00323 1.05

452 0.068 0.00888 0.85 596 0.006 0.00307 1.01

454 0.067 0.00873 0.85 598 0.006 0.0029 1.01

456 0.066 0.00871 0.85 600 0.006 0.00274 1.02

458 0.066 0.00875 0.84 602 0.006 0.00291 1.02

460 0.065 0.00865 0.84 604 0.005 0.00286 1.02

462 0.065 0.00856 0.83 606 0.005 0.00258 0.99

464 0.064 0.00842 0.83 608 0.006 0 1.01

466 0.063 0.00849 0.82 610 0.006 0.00289 1.04

468 0.062 0.00846 0.82 612 0.006 0.00281 1.00

470 0.061 0.00804 0.81 614 0.006 0.00261 1.01

472 0.059 0.00796 0.81 616 0.006 0.00257 1.02

474 0.058 0.00779 0.80 618 0.006 0.00237 1.01

476 0.056 0.00765 0.79 620 0.007 0.00246 1.00

478 0.055 0.00759 0.79 622 0.007 0.00253 1.00

480 0.054 0.00738 0.79 624 0.007 0.00251 1.02

482 0.053 0.00731 0.79 626 0.007 0.00217 1.02

484 0.051 0.00719 0.79 628 0.007 0.00223 1.01

486 0.051 0.00708 0.78 630 0.007 0.00248 1.00

488 0.049 0.00692 0.79 632 0.007 0.00227 1.01

490 0.048 0.00684 0.78 634 0.007 0.00212 0.99

492 0.047 0.00664 0.79 636 0.008 0.00214 0.98

494 0.046 0.00652 0.78 638 0.008 0.00216 0.98

496 0.044 0.00631 0.78 640 0.008 0.00214 0.97

498 0.042 0.00615 0.78 642 0.008 0.00187 0.96

(Continued)
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TABLE 3 | Continued

λ A(λ) SD B(λ) λ A SD B(λ)

500 0.040 0.00599 0.78 644 0.008 0.00206 0.98

502 0.038 0.00583 0.78 646 0.008 0.00209 0.99

504 0.036 0.00564 0.78 648 0.008 0.0021 0.98

506 0.034 0.00539 0.79 650 0.008 0.00189 0.97

508 0.032 0.00519 0.78 652 0.008 0.00204 0.96

510 0.030 0.00503 0.79 654 0.008 0.00217 0.96

512 0.028 0.00498 0.79 656 0.008 0.00181 0.96

514 0.027 0.00453 0.78 658 0.009 0.0017 0.95

516 0.025 0.00434 0.78 660 0.010 0.00178 0.95

518 0.024 0.00414 0.78 662 0.012 0.00162 0.94

520 0.023 0.00416 0.78 664 0.013 0.00184 0.94

522 0.022 0.00391 0.78 666 0.016 0.00213 0.94

524 0.021 0.00376 0.78 668 0.018 0.00225 0.93

526 0.020 0.00393 0.79 670 0.020 0.00244 0.94

528 0.019 0.00372 0.80 672 0.022 0.00249 0.95

530 0.018 0.00386 0.79 674 0.024 0.00253 0.95

532 0.017 0.00365 0.80 676 0.024 0.00251 0.93

534 0.017 0.00362 0.82 678 0.024 0.00262 0.92

536 0.016 0.00343 0.81 680 0.024 0.00262 0.98

538 0.015 0.00349 0.82 682 0.022 0.00245 0.98

540 0.014 0.00343 0.84 684 0.020 0.00234 0.98

542 0.014 0.00337 0.89 686 0.017 0.00224 0.98

688 0.014 0.00195 0.98

690 0.011 0.00162 0.98

692 0.009 0.00132 0.98

694 0.007 0.00112 0.98

696 0.005 0.00102 0.98

698 0.004 0.00105 0.98

700 0.003 0.0011 0.98

aph (λ) = A(λ) (Chl-a)ˆB(λ) and determination coefficients on the log-transformed data r2 (summer).

was not analyzed, but rough assessment of NPP (share of
photoprotective pigments in total weight all pigments) based on
dependence of NPP on light intensity (Babin et al., 1996) showed
that NPP in UML was∼5 times higher in summer in comparison
with NPP in winter (Figure 6).

Seasonal phytoplankton succession observed is typical for
the deep-water ecosystem of the Black Sea (Georgieva, 1993;
Berseneva et al., 2004; Mikaelyan et al., 2005). In general biomass
of the phytoplankton consists of Bacillariaphyceae, Dinophyceae,
and Prymnesiophyceae (presented mainly by coccolithophores).
Two-weekly monitoring at fixed stations in the western deep-
water part of the Black Sea showed a change in phytoplankton
species composition within an year (Berseneva et al., 2004): in
general diatoms were dominating in winter and in yearly spring
“blooms,” dinoflagellates and coccolithophores were prevailing
in the community in summer. Coccolithophores “bloom” in
May-June.

Shift in species dominating in phytoplankton community is
attributed with changes in size and shape of the cells. Cells
size effects on pigment package within the cells which results

in decreasing of a∗
ph
(λ) due to self-shading of pigments within

large cells (Morel and Bricaud, 1981; Sosik and Mitchell, 1994;
Fujiki and Taguchi, 2002). In different ocean regions variability
in the a∗

ph
(λ) was related with change in phytoplankton species

composition and cell size (Bricaud et al., 1995; Cleveland,
1995; Millan-Nunez et al., 2004). Package effect caused by

cell size is detected by decreasing of a∗
ph
(678) (Fujiki and

Taguchi, 2002) because at shorter wavelengths a∗
ph
(λ) is affected

by accessory pigments as well. Values of a∗
ph
(678) decreased

in winter by ∼15% compared with summer due to both
C/Chl-a and phytoplankton variability (Figures 3, 5) although

the large diatoms (Pseudosolenia calcar-avis) were dominated in
phytoplankton community.

The cells of Pseudosolenia calcar-avis have cylindrical shape
unlike dinoflagellates, cells of which are closer to the ellipsoid.
Volume of Pseudosolenia calcar-avis cell exceeds ∼2 orders of
magnitude the volume of the dinoflagellates (Gymnodinium spp)
cells. However, in the case of the cylindrically shaped cells the
large volume is not critical for the cell’s capacity to absorb
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TABLE 4 | Spectral values of the constant obtained when fitting the variations of aph(λ) vs. the (chlorophyll a + phaeopigment) concentration (Chl-a) to

power laws of the form.

λ A(λ) SD B(λ) λ A SD B(λ)

400 0.0285 0.00521 0.89 544 0.0147 0.00266 0.96

402 0.0294 0.00513 0.88 546 0.0143 0.00264 0.97

404 0.0306 0.00508 0.88 548 0.0137 0.00261 0.98

406 0.0318 0.00508 0.87 550 0.0131 0.00255 0.99

408 0.0331 0.00510 0.87 552 0.0125 0.00247 1.00

410 0.0343 0.00512 0.86 554 0.0118 0.00235 1.02

412 0.0354 0.00518 0.86 556 0.0111 0.00222 1.02

414 0.0363 0.00521 0.85 558 0.0104 0.00206 1.04

416 0.0371 0.00526 0.84 560 0.0097 0.00191 1.05

418 0.0376 0.00528 0.84 562 0.0090 0.00178 1.06

420 0.0381 0.00529 0.83 564 0.0085 0.00165 1.06

422 0.0386 0.00535 0.83 566 0.0080 0.00152 1.09

424 0.0391 0.00539 0.83 568 0.0076 0.00141 1.12

426 0.0397 0.00543 0.82 570 0.0073 0.00130 1.14

428 0.0405 0.00550 0.82 572 0.0070 0.00124 1.13

430 0.0415 0.00559 0.82 574 0.0069 0.00119 1.12

432 0.0426 0.00569 0.82 576 0.0069 0.00115 1.12

434 0.0436 0.00578 0.82 578 0.0069 0.00112 1.13

436 0.0444 0.00583 0.82 580 0.0070 0.00110 1.12

438 0.0448 0.00586 0.82 582 0.0071 0.00109 1.12

440 0.0448 0.00584 0.82 584 0.0072 0.00110 1.11

442 0.0444 0.00578 0.82 586 0.0073 0.00110 1.08

444 0.0436 0.00565 0.82 588 0.0074 0.00111 1.08

446 0.0426 0.00554 0.81 590 0.0075 0.00110 1.07

448 0.0416 0.00541 0.81 592 0.0075 0.00110 1.08

450 0.0407 0.00530 0.81 594 0.0074 0.00110 1.07

452 0.0400 0.00521 0.81 596 0.0073 0.00109 1.03

454 0.0396 0.00514 0.80 598 0.0071 0.00107 1.02

456 0.0394 0.00508 0.80 600 0.0069 0.00106 1.05

458 0.0393 0.00503 0.81 602 0.0068 0.00104 1.03

460 0.0394 0.00501 0.80 604 0.0066 0.00102 1.04

462 0.0394 0.00496 0.80 606 0.0065 0.00102 1.07

464 0.0394 0.00492 0.80 608 0.0065 0.00101 1.06

466 0.0393 0.00485 0.80 610 0.0066 0.00101 1.07

468 0.0390 0.00479 0.80 612 0.0066 0.00100 1.09

470 0.0386 0.00470 0.80 614 0.0067 0.00099 1.05

472 0.0381 0.00459 0.80 616 0.0069 0.00099 1.07

474 0.0374 0.00448 0.79 618 0.0070 0.00099 1.08

476 0.0366 0.00437 0.78 620 0.0071 0.00099 1.08

478 0.0358 0.00425 0.78 622 0.0072 0.00100 1.07

480 0.0350 0.00416 0.79 624 0.0073 0.00100 1.07

482 0.0341 0.00406 0.78 626 0.0074 0.00100 1.07

484 0.0334 0.00399 0.78 628 0.0075 0.00000 1.06

486 0.0326 0.00392 0.78 630 0.0076 0.00101 1.06

488 0.0319 0.00388 0.78 632 0.0077 0.00102 1.06

490 0.0311 0.00385 0.79 634 0.0079 0.00103 1.06

492 0.0304 0.00380 0.79 636 0.0080 0.00104 1.03

494 0.0296 0.00377 0.80 638 0.0080 0.00104 1.04

496 0.0288 0.00371 0.80 640 0.0080 0.00104 1.05

498 0.0279 0.00364 0.81 642 0.0080 0.00107 1.04

(Continued)
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TABLE 4 | Continued

λ A(λ) SD B(λ) λ A SD B(λ)

500 0.0270 0.00355 0.81 644 0.0080 0.00107 1.02

502 0.0261 0.00344 0.82 646 0.0079 0.00108 1.01

504 0.0252 0.00333 0.83 648 0.0078 0.00109 1.01

506 0.0243 0.00321 0.84 650 0.0078 0.00107 1.02

508 0.0235 0.00310 0.85 652 0.0079 0.00107 1.03

510 0.0227 0.00300 0.85 654 0.0082 0.00107 1.03

512 0.0220 0.00290 0.86 656 0.0087 0.00109 1.05

514 0.0213 0.00280 0.86 658 0.0095 0.00115 1.05

516 0.0206 0.00273 0.87 660 0.0106 0.00126 1.05

518 0.0200 0.00267 0.87 662 0.0121 0.00142 1.05

520 0.0194 0.00262 0.87 664 0.0137 0.00160 1.04

522 0.0189 0.00258 0.88 666 0.0156 0.00174 1.03

524 0.0184 0.00254 0.89 668 0.0175 0.00188 1.02

526 0.0180 0.00252 0.90 670 0.0191 0.00196 1.01

528 0.0176 0.00251 0.90 672 0.0203 0.00202 0.99

530 0.0172 0.00251 0.92 674 0.0210 0.00202 0.98

532 0.0169 0.00252 0.91 676 0.0211 0.00200 0.96

534 0.0165 0.00254 0.92 678 0.0206 0.00196 0.96

536 0.0162 0.00257 0.93 680 0.0194 0.00188 0.95

538 0.0159 0.00260 0.94 682 0.0178 0.00180 0.95

540 0.0155 0.00263 0.94 684 0.0156 0.00171 0.95

542 0.0152 0.00266 0.95 686 0.0132 0.00160 0.95

688 0.0108 0.00147 0.95

690 0.0086 0.00131 0.95

692 0.0066 0.00114 0.95

694 0.0051 0.00097 0.95

696 0.0038 0.00083 0.95

698 0.0029 0.00070 0.95

700 0.0022 0.00062 0.95

aph (λ) = A(λ) (Chl-a)ˆB(λ) and determination coefficients on the log-transformed data r2 (winter).

light. The light absorption capacity of cylindrically shaped cells
is determined by the diameter of their section (Kirk, 1976).
Therefore, despite the difference in the cell volume optically
significant size of cylindrical diatoms (10–30µm) was similar to
that of dinoflagellates (10–40 µm). Consequently, in this case the
effect of the size (volume) of the cells on the degree of pigment
packaging is not as significant as in the case of large spherical cells
(Morel and Bricaud, 1981). It explains weak (∼15%) seasonal
difference in a∗

ph
(678) observed in the Black Sea (Figure 5).

CONCLUSIONS

Seasonal differences in chlorophyll-a specific phytoplankton
light absorption coefficients are caused by annual dynamics
in environmental conditions in the (UML) and adaptive
response of algae cells/population (via variation of pigment
composition and concentration in the cell) and of phytoplankton
community (via shift in phytoplankton species composition with
attributed changes in size and shape of cell). Consequently,
parameterization of the relationship between phytoplankton

light absorption coefficients and chlorophyll a concentration
proceeded for different seasons (summer and winter) will allow
to refine the regional algorithm of Chl-a assessment based on
remote sensing (Suslin and Churilova, 2016). Because in the
Black Sea light absorption by dissolved organic matter there is
relatively high and not correlated with phytoplankton absorption
or chlorophyll a concentration regional Chl-a algorithm requires
splitting of light absorption into aph(λ) and aCDM(λ) (Suslin and
Churilova, 2016) and then Chl-a is retrieved from the aph(λ) at
490 nm. Relationships between Chl-a and aph(λ) obtained for
the summer and winter conditions in the Black Sea differ by
coefficients A(λ) in power equation, but coefficients B(λ) are
practically the same (Figure 5). Consequently, values of A(λ)
coefficient define the seasonal difference in retrieval of Chl-a
based on aph(λ). Values of A(λ) at 490 nm are equal 0.048

and 0.031 m2 mg−1 correspondently for summer and winter
conditions in UML of the Black Sea (Tables 3, 4). For instance,
using the summer relationship between Chl-a and summer
aph (490) values one can get Chl-a equal to 0.2–0.3mg m−3,
but using the winter link between these parameters or link
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FIGURE 6 | Photosynthetically available radiance in upper mixed layer (PARUML, blue bars), carbon to chlorophyll a ratio (C/Chl-a, green bars), share

of non-photosynthetic photoprotective pigments (NPP, red bars) in total pigments and coefficient [A(440), gray bars] in phytoplankton light absorption

parameterization fulfilled with power equation aph(λ) = A(λ)(Chl-a)B(λ) for upper mixed layer in the Black Sea in summer and winter.

obtained for different regions of the world ocean (Bricaud et al.,
1995) one gets Chl-a equal to 0.36–0.53 or to 0.34–0.55mg
m−3. Consequently, the retrieved Chl-a values become almost
twice lower if one takes into account the Black Sea summer
conditions and relevant relationship between aph(λ) and Chl-a.
Undoubtedly accuracy of splitting of light absorption into aph(λ)
and aCDM(λ) also affect the accuracy of Chl-a assessment (Suslin
and Churilova, 2016).

Moreover, seasonal difference in links between aph(λ) and
Chl-a could provide more correct assessment of downwelling
radiance and primary production in the Black Sea using spectral
approaches (Churilova et al., 2016). However, it should be
noted that application of the obtained aph(λ) parametrization
is limited by the rather narrow range of Chl-a, which
was measured in the deep waters. The relatively narrow
range of Chl-a caused the high values of B(λ) coefficients
in comparison of those obtained based on numerical data
measured in different regions of World Ocean with Chl-a
covering the range 0.02–25mg m−3 (Figure 5; Bricaud et al.,
1995).

The parameterization obtained based on bio-optical data
measured in deep waters is unlikely to be correct for
coastal waters. Coastal waters may differ from deep waters
in nutrient availability, transparency and turbulence. These
different environmental conditions would results in change of
intracellular pigment concentration and phytoplankton species
composition which in turn effect on a∗

ph
(λ). In this regard

since 2014 bio-optical properties have been investigated in the
Crimean coastal waters in different seasons. These new data will
be merged with summer results measured before (Churilova and

Berseneva, 2004; Dmitriev et al., 2009) and then analyzed to
determine the seasonality in aph(λ) parameterization.
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